Determinan Matriks
18.01
Diposting oleh zakky amarullah
-
Jika A2x2 = é a b ù , maka determinan matriks A didefinisikan sebagai
Jika A2x2 = ë c d û
+
|A| = ad - bc
- - -
Jika A3x3 = é a b c ù a b
Jika A3x3 = ê d e f ú d e
Jika A3x3 = ë g h i û g h
+ + +
maka determinan matriks A didefinisikan sebagai
|A| = aei + bfg + cdh - gec - hfa - idb
Keterangan:
Untuk menghitung determinan A3x3 dibantu dengan menulis ulang dua kolom pertama matriks tersebut atau cara ekspansi baris pertama.
|A| =a ½ e f ½ - b ½ d f ½ + c ½ d e ½ = aei-afh-bdi+bfg+cdh-cge
½ h i
½
½ g i
½
½ g h ½
Other Article
- Collection Articles Mathematic
- Integral Tertentu
- Integral Tak Tentu
- Penggunaan Differensial
- Differensial
- Limit Fungsi Trigonometri
- Limit
- Rumus-Rumus Trigonometri
- Trigonometri
- Komposisi Transfromasi dan Transformasi Invers
- Transformasi Geometri
- Menyelesaikan Sistem Persamaan Linear
- Matriks Satuan dan Matriks Invers
- Perkalian Dua Matriks
- Operasi Matriks
- Matriks Bujur Sangkar dan Matriks Transpos
- Matriks
- Barisan dan Deret Geometri (Ukur / Kali)
- Barisan dan Deret Aritmatika (Hitung / Tambah)
- Barisan dan Deret
- Peluang Kejadian Bebas dan Tak Bebas
- Peluang Kejadian
- Binonium Newton
- Kombinasi
- Komposisi Transfromasi dan Transformasi Invers
- Transformasi Geometri
- Menyelesaikan Sistem Persamaan Linear
- Matriks Satuan dan Matriks Invers
- Perkalian Dua Matriks
- Operasi Matriks
- Matriks Bujur Sangkar dan Matriks Transpos
- Matriks
- Barisan dan Deret Geometri (Ukur / Kali)
- Barisan dan Deret Aritmatika (Hitung / Tambah)
- Barisan dan Deret
- Peluang Kejadian Bebas dan Tak Bebas
- Peluang Kejadian
- Binonium Newton
- Kombinasi
- Permutasi
- Ukuran Penyebaran statistika
- Ukuran Pemusatan Untuk Data Yang Digolongkan
- Ukuran Pemusatan Untuk Data Yang Tidak Digolongkan
- Statistika
- Persamaan Logaritma
- Batasan dan Sifat-Sifat Logaritma
- Pertidaksamaan Eksponen
- Persamaan Eksponen
Posting Komentar