Differensial (turunan) fungsi y = f(x) terhadap x didefinisikan sebagai :

dy = l i m f(x +
Dx) - f(x)
dx
Dx Þ 0 Dx


(Perbandingan perubahan y yang disebabkan karena perubahan x, untuk perubahan x yang kecil sekali)

Notasi lain : df/dx = f`(x) ; y`

RUMUS - RUMUS

1. FUNGSI ALJABAR

y = xn Þ dy/dx = nxn-1

2. FUNGSI TRIGONOMETRI

y = sin x Þ dy/dx = cos x
y = cos x Þ dy/dx = - sin x
y = sin x Þ dy/dx = sec²x

Sifat - sifat :

1. y = c (c=konstanta) Þ dy/dx = 0

2. y = c U(x) Þ dy /dx = c . U`(x)

3. y = U(x) ± V(x) Þ dy /dx = U`(x) ± V`(x)

4. Bentuk perkalian
y = U(x) . V(x) Þ dy/dx = U`(x).V(x) + U(x).V`(x)

5. Bentuk pembagian
y = U(x) Þ dy = U`(x).V(x) - U(x).V`(x)
V(x) dx (V(x))²

6. Bentuk rantai
y = f(U) dan U = g(x) Þ dy/dx = dy/du .du/dx

y = (ax + b)n
dy/dx = n(ax+b)n-1(a)

y = sin (ax + b)
dy/dx = (a) cos (ax+b)

y = sinn (ax + b)
dy/dx = n sinn-1(ax+b) [a cos (ax+b)]

Ket : Untuk menyelesaikan persoalan, sifat dan rumus-rumus ini dikombinasikan
Kode Iklan anda yang ingin ada di sebelah kiri disini
Kode Iklan anda yang ingin ada di sebelah kanan disini

Other Article



visit the following website islamic.net Make Smart Berita Bola