Barisan dan Deret
17.54
Diposting oleh zakky amarullah
BARISAN adalah urut-urutan bilangan dengan aturan tertentu.
Suku-suku suatu barisan adalah nilai-nilai dari suatu fungsi yang daerah definisinya himpunan bilangan asli (n = natural = asli)
Contoh:
adalah suku ke-n dari suatu barisan, dimana n Î N = {1,2,3,.....}
Barisan itu adalah : 1,3,5,7,....
Rumus suku ke-n barisan ini adalah Un = 1/3n
Kode Iklan anda yang ingin ada di sebelah kiri disini
Kode Iklan anda yang ingin ada di sebelah kanan disini
Other Article
matematika
- Collection Articles Mathematic
- Integral Tertentu
- Integral Tak Tentu
- Penggunaan Differensial
- Differensial
- Limit Fungsi Trigonometri
- Limit
- Rumus-Rumus Trigonometri
- Trigonometri
- Komposisi Transfromasi dan Transformasi Invers
- Transformasi Geometri
- Menyelesaikan Sistem Persamaan Linear
- Determinan Matriks
- Matriks Satuan dan Matriks Invers
- Perkalian Dua Matriks
- Operasi Matriks
- Matriks Bujur Sangkar dan Matriks Transpos
- Matriks
- Barisan dan Deret Geometri (Ukur / Kali)
- Barisan dan Deret Aritmatika (Hitung / Tambah)
- Peluang Kejadian Bebas dan Tak Bebas
- Peluang Kejadian
- Binonium Newton
- Kombinasi
matematika kelas 2
- Komposisi Transfromasi dan Transformasi Invers
- Transformasi Geometri
- Menyelesaikan Sistem Persamaan Linear
- Determinan Matriks
- Matriks Satuan dan Matriks Invers
- Perkalian Dua Matriks
- Operasi Matriks
- Matriks Bujur Sangkar dan Matriks Transpos
- Matriks
- Barisan dan Deret Geometri (Ukur / Kali)
- Barisan dan Deret Aritmatika (Hitung / Tambah)
- Peluang Kejadian Bebas dan Tak Bebas
- Peluang Kejadian
- Binonium Newton
- Kombinasi
- Permutasi
- Ukuran Penyebaran statistika
- Ukuran Pemusatan Untuk Data Yang Digolongkan
- Ukuran Pemusatan Untuk Data Yang Tidak Digolongkan
- Statistika
- Persamaan Logaritma
- Batasan dan Sifat-Sifat Logaritma
- Pertidaksamaan Eksponen
- Persamaan Eksponen
This entry was posted on October 4, 2009 at 12:14 pm, and is filed under
Barisan dan Deret,
matematika,
matematika kelas 2,
sma kelas 2
. Follow any responses to this post through RSS. You can leave a response, or trackback from your own site.
Langganan:
Posting Komentar (Atom)
Posting Komentar