Batasan dan Sifat-Sifat Logaritma
17.02
Diposting oleh zakky amarullah
BATASAN
Logaritma bilangan b dengan bilangan pokok a sama dengan c yang memangkatkan a sehingga menjadi b.
a log b = c ® ac = b ® mencari pangkat
Ket : a = bilangan pokok (a > 0 dan a ¹ 1)
b = numerus (b > 0)
c = hasil logaritma
Dari pengertian logaritma dapat disimpulkan bahwa :
alog a = 1 ; alog 1 = 0 ; alog an = n
SIFAT-SIFAT
1. alog bc = alogb + alogc
2. alog bc = c alog b
3. alog b/c = alog b -alog c ® Hubungan alog b/c = - a log b/c
4. alog b = (clog b)/(clog a) ® Hubungan alog b = 1 / blog a
5. alog b. blog c = a log c
6. a alog b = b
7. alog b = c ® aplog bp = c ® Hubungan : aqlog bp = alog bp/q
= p/q alog b
Keterangan:
1. Bila bilangan pokok suatu logaritma tidak diberikan, maka maksudnya logaritma tersebut berbilangan pokok = 10.
[ log 7 maksudnya 10log 7 ]
2. lognx adalah cara penulisan untuk (logx)n
Bedakan dengan log xn = n log x
Contoh:
1. Tentukan batas nilai agar log (5 + 4x - x²) dapat diselesaikan !
syarat : numerus > 0
x² -4x - 5 < 0
(x-5)(x+1) < 0
-1 < x < 5
2. Sederhanakan
2 3log 1/9 + 4log 2 = 2(-2) + 1/2 =
3log 2. 2log 5 .52log 3 3log 2.2log 5. 5²log3
- 3 1/2 = -3 1/2 = -7
3log 31/2 1/2
3. Jika 9log 8 = n Tentukan nilai dari 4log 3 !
9log 8 = n
3²log 2³ = n
3/2 3log 2 = n
3log 2 = 2n
3
4log 3 = 2²log 3
= 1/2 ²log 3
= 1/2 ( 1/(³log 2) )
= 1/2 (3 / 2n)
= 3/4n
4. Jika log (a² / b4) Tentukan nilai dari log ³Ö(b²/a) !
log (a²/b4)
log (a/b²)²
2 log ( a/b²)
log ( a/b² )
log ³Ö(b²/a) = -24
= -24
= -24
= -12
= log (b²/a)1/3
= 1/3 log (b² / a)
= -1/3 log (a/b²)
= -1/3 (-12) = 4
Posting Komentar