Suatu bentuk aljabar disebut simetris, seperti x² + y², jika x dan y dipertukarkan tempatnya menjadi y² + x², maka nilainya sama dengan bentuk semula.

Dalam hal ini kita merubah bentuk yang diberikan menjadi bentuk (X1+X2) atau (X1.X2)

1. X1² + X2²

= (X1 + X2)² - 2X1.X2
= (-b/a)² + 2(c/a)

2. X1³ + X2³

= (X1+X2)³ - 3X1X2(X1+X2)
= (-b/a)³ - 3(c/a)(-b/a)

3. X14 + X24

= (X1²+X2²)² -(X1²X2²)
= [(X1+X2)² - 2X1X2]² - 2(X1X2)²
= [(-b/a)² - 2(c/a)]² - 2(c/a)²

4. X1²X2 + X1X2²

= X1X2(X1+X2)
= c/a (-b/c)

5. 1/X1 + 1/X2

= (X1+X2)/X1+X2
= (-b/a)/(c/a)
= -b/c

6. X1/X2 + X2/X1

= (X1²+X2²)/X1X2
= ((X1+X2)²-2X1X2)/X1X2

7. (X1-X2)²

= (X1+X2)² - 4X1X2 atau [ÖD/a]² = D/a²

8. X1² - X1² = (X1+X2)(X1-X2)
= (-b/a)(ÖD/a)

Bedakan Istilah

Jumlah Kuadrat : (X1²+X2²)

dengan

Kuadrat Jumlah (X1+X2

Kode Iklan anda yang ingin ada di sebelah kiri disini
Kode Iklan anda yang ingin ada di sebelah kanan disini

Other Article



visit the following website islamic.net Make Smart Berita Bola