Algebraic element
19.52
Diposting oleh Melany Christy
In mathematics, if L is a field extension of K, then an element a of L is called an algebraic element over K, or just algebraic over K, if there exists some non-zero polynomial g(x) with coefficients in K such that g(a)=0. Elements of L which are not algebraic over K are called transcendental over K.
These notions generalize the algebraic numbers and the transcendental numbers (where the field extension is C/Q, C being the field of complex numbers and Q being the field of rational numbers).
Examples
- The square root of 2 is algebraic over Q, since it is the root of the polynomial g(x) = x2 - 2 whose coefficients are rational.
- Pi is transcendental over Q but algebraic over the field of real numbers R: it is the root of g(x) = x - π, whose coefficients (1 and -π) are both real, but not of any polynomial with only rational coefficients. (The definition of the term transcendental number uses C/Q, not C/R.)
Properties
The following conditions are equivalent for an element a of L:
- a is algebraic over K
- the field extension K(a)/K has finite degree, i.e. the dimension of K(a) as a K-vector space is finite. (Here K(a) denotes the smallest subfield of L containing K and a)
- K[a] = K(a), where K[a] is the set of all elements of L that can be written in the form g(a) with a polynomial g whose coefficients lie in K.
This characterization can be used to show that the sum, difference, product and quotient of algebraic elements over K are again algebraic over K. The set of all elements of L which are algebraic over K is a field that sits in between L and K.
If a is algebraic over K, then there are many non-zero polynomials g(x) with coefficients in K such that g(a) = 0. However there is a single one with smallest degree and with leading coefficient 1. This is the minimal polynomial of a and it encodes many important properties of a.
Fields that do not allow any algebraic elements over them (except their own elements) are called algebraically closed. The field of complex numbers is an example.
Other Article
- Collection Articles Mathematic
- Party Acquaintances
- Algebraic Structure of Complex Numbers
- Algorithm for Computing the LCM
- Combining Like Terms
- SAT Math Practice 1: Answers and Explanations
- SAT Math Practice 1: Answers and Explanations
- Mulitplying Polynomials Answers and Explanations
- Quadratic Solving
- Simplifying with Exponents Answers and Explanations
- Simplifying with Exponents (2)
- Simplifying with Exponents
- Calculate Slope With a Formula
- Graphing Quadratic Functions
- Graph theory
- Combinatorics
- Discrete mathematics
- Number line
- Mathematics education
- Gaussian elimination
- Binary operation
- Commutative algebra
- Field theory (mathematics)
- Ring theory
- Group theory
- Combining Like Terms
- SAT Math Practice 1: Answers and Explanations
- SAT Math Practice 1: Answers and Explanations
- Quadratic Solving
- Simplifying with Exponents Answers and Explanations
- Simplifying with Exponents (2)
- Simplifying with Exponents
- Calculate Slope With a Formula
- Graphing Quadratic Functions
- Gaussian elimination
- Binary operation
- Commutative algebra
- Field theory (mathematics)
- Ring theory
- Group theory
- Abstract algebra
- Elementary algebra
- Algebraic function
- Algebraic extension
- Algebraic solution
Posting Komentar